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The effect of Poiseuille flow on the convective stability of electrochemical system is considered. It is found
that the effect is destabilizing in the case of oscillatory instability in the system. It is shown that this
effect is caused by the fact that the problem is not self-conjugate, because the system is multicomponent.
In addition, it is found that the effect of Reynolds number on the stability of these systems is linear at
small Reynolds number, in contrast to the self-conjugate Rayleigh–Benard problem, where the effect is
quadratic.
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1. Introduction

The effect of forced convection in horizontal plane channel on
natural-convective flows, which are caused by nonuniform heating
of liquid, has been studied from the beginning of 20th century, pre-
dominantly, in connection with geophysical applications [1]. This
problem is a combination of Rayleigh–Benard problem (the stabil-
ity of liquid with nonuniform density) and the problem of stability
of plane flow (the Orr–Sommerfeld problem).

Classical Rayleigh–Benard problem involves the study of con-
vective systems, in which stable equilibrium can be reached, and
the determination of conditions, under which the equilibrium is
violated. The problem is reduced to the determination of critical
Rayleigh number Racr. If the Rayleigh number Ra of the system is
lower than the critical one (Ra < Racr), liquid remains stagnant
and convection does not occur; at Ra > Racr, natural convection oc-
curs in the system [2].

When a complex system with applied shear flow in the X direc-
tion, which is characterized by the Reynolds number Re, is consid-
ered (Fig. 1), the problem is posed to determine the critical
Rayleigh number as a function of Reynolds number Racr(Re). If
the shear flow has a parabolic rate profile in the undisturbed state,
the study of the system for stability is called the Rayleigh–Benard–
Poiseuille (RBP) problem [3]. The linear stability of RBP was first
studied by Gage and Reid [3]. This problem is characterized by
three dimensionless parameters: the Rayleigh number, the Prandtl
(Schmidt) number, and the Reynolds number. The determination of
ll rights reserved.
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critical Rayleigh numbers at small Reynolds numbers and arbitrary
Prandtl number was considered in [4]. In addition, the case of small
Reynolds numbers and constant Prandtl number was considered in
[5].

It can be readily shown that the shear flow has an effect only on
the perturbations, whose convective rolls are perpendicular to the
flow (transversal perturbations). Perturbations, whose convective
rolls are parallel to the flow (longitudinal perturbations) remain
invariant. This means that, in the case of plane liquid layer, to
the linear approximation, forced convection only directs convec-
tive rolls and does not change the convective stability of system
as a whole. However, in more complex geometric conditions, when
transversal and longitudinal perturbations are not equally favored
by influence of the sidewalls, shear flow can has a determining ef-
fect on the system stability [6].

In electrochemistry, the Rayleigh–Benard–Poiseuille problem
has some peculiarities. Firstly, the Prandtl (Schmidt) number in
the electrochemical systems is much higher (about 1000) than
in the heat systems. Secondly, the electrochemical systems are
commonly multicomponent, and this can complicate significantly
the system’s behavior. The transfer equations in the electrochem-
ical systems and the boundary conditions are often more
complicated.
2. Statement of problem

A system of two horizontal plane electrodes of the same metal
is considered. The space between the electrodes is filled with elec-
trolyte solution. An external constant pressure, which causes longi-
tudinal liquid flow, is applied to the system.
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Nomenclature

cm concentration of ions of mth type
C1 dimensionless concentration of electroactive ion,

C1 ¼ c1
2c1bC4 dimensionless concentration of fictitious ion,

C4 ¼ z3c4
2ac1b ðz3�z2 Þ

b2

Dm diffusion coefficient of ions of mth type
D4 dimensionless parameter, which is proportional to the

diffusion coefficient of fictitious ion, D4 ¼ D2D3ðz3�z2Þ
z3D3�z2D2

D4 dimensionless parameter, D4 ¼ D4
D1

D* coefficient of cross effect of concentration of electroac-
tive ion on the fictitious ion transfer,

D� ¼ D1
D2

n2
n1

D1 � D3ðz3�z2ÞþðD3�D2Þz1
z3D3�z2D2

D2 � n2�n1
n1

D4

h i
D� dimensionless parameter, D� ¼ z3D�

ad1ðz3�z2Þb2
eX unit vector collinear with X axis
eZ unit vector collinear with Z axis
F Faraday number
g gravitational acceleration
h distance between electrodes
Mm designation of ions of mth type
nm stoichiometric coefficient of ions of mth type
n number of electrons, which are transferred in the elec-

trode reaction, n = z1n1 � z2n2

p pressure
P dimensionless pressure, P ¼ h2

qbmD1
p

R gas constant
Ra Rayleigh number, Ra ¼ 2gh3c1b

a
qbmD1

Re Reynolds number, Re ¼ Vmaxh
v

Sc Schmidt number, Sc ¼ v
D1

t time
T temperature
U perturbation of electrolyte flow velocity
v electrolyte flow velocity
V dimensionless electrolyte flow velocity, V ¼ v

D1
v

�v velocity profile of the Pioseuille flow in direction of x

axis, �v ¼ vmax 1� 4ðz=hÞ2
h i

vmax maximum velocity of the Poiseuille flow
V0 vector of velocity profile of the Poiseuille flow, V0 = eXV0

V0 velocity profile of the Poiseuille flow, V0 = 1 � 4Z2

W component of perturbation of electrolyte flow velocity
along the Z axis

w amplitude of component of perturbation of electrolyte
flow velocity along the Z axis

x, y, z Cartesian coordinates (the origin of coordinates is
placed at the lower electrode (cathode), z axis is direc-
ted vertically upward from the cathode to the anode)

X, Y, Z dimensionless Cartesian coordinates, X ¼ x
h ; Y ¼

y
h ; Z ¼ z

h
Zm charge number of ions of mth type

Greek symbols
a mass coefficient of electrolyte with three types of ions,

a ¼ b1 þ z1�z3n2D1=n1D2
z3�z2

b2

bm mass coefficient of ions of mth type, bm = op/ocm

DH horizontal Laplacian (in the X � Y plane), DH ¼ o2

oX2 þ o2

oY2

H1 perturbation of electroactive ions
H4 perturbation of fictitious ions
h1 amplitude of perturbation of electroactive ions
h4 amplitude of perturbation of fictitious ions
k eigenvalue
v electrolyte kinematic viscosity
P perturbation of pressure
q electrolyte density
u electric potential
U dimensionless electric potential, U ¼ Fu

RT
s dimensionless time, s ¼ v

h2 t

Subscript
b corresponds to the bulk electrolyte

Overbar
– undisturbed state
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Within the Boussenesq approximation, the equations describing
convective mass transfer for binary electrolyte (for example, for
CuSO4 solution between two copper electrode) will coincide with
the heat-transfer equations [2,7,8], and equations for the system
Fig. 1. Plane horizontal layer. Axes and profile of main flow (cathode: z = �1/2;
anode: z = 1/2).
containing three types of ions with an excess of supporting electro-
lyte excluding the migration current (for example, CuSO4 + H2SO4

(in excess) solution between two copper electrodes) can be pre-
sented as follows (see Appendix):

oV
os
þ 1

Sc
ðV:rÞV ¼ �rP þ DV � ezRaðC1 � 0:5þ C4Þ ð1Þ

divðVÞ ¼ 0 ð2Þ

Sc
oC1

os
¼ DC1 � VrC1 ð3Þ

Sc
oC4

os
¼ D4DC4 � VrC4 þ D�DC1 ð4Þ

Vjz¼�1
2; Z¼1

2
¼ 0 ð5Þ

C1jz¼�1
2
¼ 0; C1jz¼1

2
¼ 1 ð6Þ

oC4

oZ

����
z¼�1

2; Z¼1
2

¼ 0 ð7Þ

Here, (1) is the Navier–Stokes equation that accounts for the
buoyancy forces, (2) is the condition of incompressibility, (3) is
the equation of electroactive ion transfer (Cu2+ in the above exam-
ples), (4) is the transfer equation of fictitious electrolyte, which is
introduced in order to eliminate the migration current [9,10], (5)
is the condition of liquid adhesion to the cell walls, boundary con-
ditions (6) show that the electrochemical reaction on the lower



Fig. 2. Dependences of (a) critical Rayleigh number Racr (the asymptotic Miller
solution [1] is shown with a fine line), (b) critical wave Rayleigh number, and (c) the
frequency of arising perturbations on the Reynolds number for systems with D� ¼ 0,
Sc = 1000.
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electrode proceeds in the limiting-current mode and leads to a de-
crease in the solution density, (7) are the boundary conditions for
fictitious electrolyte.

As is easy to see, at D� ¼ 0, due to zero boundary conditions (7),
the problem is reduced to the well-known heat-transfer problem.

At nonzero longitudinal gradient of pressure in the system with
plane electrodes (Fig. 1), the Poiseuille flow arises. Its profile in the
dimensionless form is

V ¼ Re � ScV0 ¼ eXRe � Scð1� 4Z2Þ ð8Þ

To investigate the stability of undisturbed state, that is, a solu-
tion of system (1)–(7) for the Poiseuille flow of electrolyte, the per-
turbations of dependent variables are introduced

C1 ¼ C1 þH1; C4 ¼ C4 þH4; V ¼ V þ U; P ¼ P þP ð9Þ

Equations for linear perturbations of velocity and concentration
are as follows:
oU
os
þ ReðV0 � rÞUþ ReðU � rÞV0 ¼ �rPþ DU� eZRaðH1 þH4Þ

ð10Þ
divðUÞ ¼ 0 ð11Þ

Sc
oH1

os
¼ DH1 � Re � Sc � V0 � rH1 �W

oC1

oZ
ð12Þ

Sc
oH4

os
¼ D4DH4 � Re � Sc � V0 � rH4 þ D�DH1 �W

oC4

oZ
ð13Þ

In the absence of natural convection system of Eqs. (3) and (4)
has a steady-state solution dependent only on vertical coordinate
Z:

C1 ¼ 1=2þ Z; C4 ¼ 0; ð14Þ

Let us twice apply rot to Eq. (10) and project the result onto Z
axis. Then, taking into account relations (14), Eqs. (10), (12) and
(13) can be written as follows:

oDW
os
þ Re V0D�

d2V0

dZ2

 !
oW
oX
¼ D2W � Ra � DHðH1 þH4Þ ð15Þ

Sc
oH1

os
¼ DH1 � Re � Sc � V0

oH1

oX
�W ð16Þ

Sc
oH4

os ¼ D4DH4 � Re � Sc � V0
oH4

oX
þ D�DH1 ð17Þ

Problem (15)–(17) has a solution in the form of so-called nor-
mal perturbations:

WðX;Y; Z; sÞ ¼ wðZÞ expð�k � sþ ikX � X þ ikY � YÞ
H1ðX;Y; Z; TÞ ¼ h1ðZÞ expð�k � sþ ikX � X þ ikY � YÞ
H4ðX;Y; Z; TÞ ¼ h4ðZÞ expð�k � sþ ikX � X þ ikY � YÞ

ð18Þ

Substituting (18) into (15)–(17), we obtain the system of equations
for amplitudes:

d2

dZ2 � k2

 !2

wþ ikxRe
d2V0

dZ2 w� V0
d2

dZ2 � k2

 !
w

" #
þ k2Raðh1 þ h4Þ

¼ �k
d2

dZ2 � k2

 !
w ð19Þ

1
Sc

d2

dZ2 � k2

 !
h1 �w

" #
� ikxReV0h1 ¼ �kh1 ð20Þ

1
Sc

D4
d2

dZ2 � k2

 !
h4 þ D�

d2

dZ2 � k2

 !
h1

" #
� ikxReV0h4 ¼ �kh4 ð21Þ

with the boundary conditions for amplitudes:

w ¼ ow
oZ
¼ h1 ¼

dh4

dZ
¼ 0 at Z ¼ �1=2 ð22Þ
This boundary-value problem is not self-conjugate and, therefore,
its eigenvalues k can be real or complex. If decrement k is real, pertur-
bation varies monotonically (until the perturbation can be consid-
ered as small, and linear expansion in terms of this perturbation is
valid; at k > 0, the perturbation damps out, and at k < 0, it increases.

3. Results and discussion

The eigenvalue problem (19)–(21) was solved using the Galer-
kin method that has been proven in the problems of hydrodynamic
stability [7]. Solutions were obtained for various magnitudes of
parameter D�. At zero cross (mutual) parameter D�, solution of



Fig. 3. Dependences of (a) critical Rayleigh number Racr (b) critical wave Rayleigh
number, and (c) the frequency of arising perturbations on the Reynolds number for
systems with D� ¼ 0:001;D4 ¼ 1, Sc = 1000.

Fig. 4. Dependences of (a) critical Rayleigh number Racr, (b) critical wave Rayleigh
number, and (c) the frequency of arising perturbations on the Reynolds number for
systems with D� ¼ 4;D4 ¼ 1, Sc = 1000.
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the problem is similar to the solution of heat problem, which is
available from the literature (Fig. 2).

As is seen from Fig. 2a, at small Reynolds numbers, the plot of
critical Rayleigh number vs. Re coincides with the asymptotic solu-
tion [4]. The flow makes the system more stable, i.e. the critical
Rayleigh number increases with increasing Reynolds number.
Moreover, frequency of perturbations linearly depends on the Rey-
nolds number (Fig. 2c). The wave number decreases at small Re, the
shear flow as if extends convective cells; however, at higher Re,
smaller cells become more beneficial (advantageous, profitable,
efficient), because the flow, which is nonuniform along Z axis,
has no time to (hollow out) blur them; this corresponds to an in-
crease in the wave number (Fig. 2b). If D� is slightly different from
zero, but insufficiently high for critical perturbations to become
oscillatory, the dependences of critical parameters on Re qualita-
tively differ from the heat case (Fig. 3).

Much more complicated dependences of critical parameters on
the Reynolds number are observed when the cross parameter D� is
sufficiently high for perturbations to become oscillatory (Fig. 4). As
is seen from Fig. 4a, at small Re, the critical Rayleigh number ini-
tially decreases with increasing Re, then increases, then, again,
steeply decreases, and only with further increase in the flow veloc-
ity, again increases. In contrast to the case of monotonic instability,
which is typical for the Rayleigh–Benard convection, weak forced
flow has a destabilizing effect on the oscillatory stability. The
forced flow converts the monotonic perturbations into oscillatory
ones (the action of forced flow on the monotonic perturbations
makes them oscillatory) and stabilizes the system by making per-
turbations to damp. A system with initially oscillatory perturba-
tions, conversely, becomes more unstable under the action of
weak forced flow.

Within the theory of perturbations, this phenomenon can be ex-
plained as follows. According to [4], for the case of Rayleigh–Be-
nard convection with imposed weak shear Poiseuille flow, the
problem can be stated as determining the spectrum of operator
A+ikReU, where A is a self-adjoined operator (it will be termed
the Rayleigh–Benard operator) and ikReU is the operator of Poiseu-
ille flow perturbation. If Re is small, by using the perturbation the-
ory for self-conjugate operators, it can be easily seen that the
correction to zero eigenvalue in the leading order will be purely
complex. (The correction will be k1 = iRek(u*Uu), where u are the
eigenvalues of Rayleigh–Benard operator A.) This means that small
Re make the critical perturbations oscillatory with a frequency lin-
early dependent of Re, but stability depends on Re2. When an effect
of weak forced flow on convective stability of system under consid-
eration is studied, the problem is in determining the spectrum of
operator B+ikReU, where B is not self-conjugate operator (the
non self-conjugation is the reason for oscillatory instability). As-



Fig. 5. Dependences of real part of spectrum on the Reynolds number (the first five
levels 1–5) for system with D� ¼ 1;D4 ¼ 1, Sc = 1000, k = 3, Ra = 4000. (a) Intersec-
tions of lower levels and (b) initial divergence of lower complex conjugate level at a
larger scale.
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sume that undisturbed system corresponding to operator B is in
the critical state of oscillatory convection, i.e. kr = 0, and ki 6¼ 0.
Operator B is equal to its complex-conjugate operator; therefor,
the lower oscillatory level will be double ±ki. First-order correction
of perturbation theory for these two values will be written using
the theory for not self-conjugate operators [11]:

þ : ikReðw��UuþÞ ð23Þ
� : ikReðwþ�Uu�Þ ð24Þ

where u+ and u� are eigenvectors of operator B corresponding to
eigenvalues iki and �iki, w+ and w� are eigenvalues of conjugate
operator B* corresponding to eigenvalues iki and �iki Due to the fact
that operators B and B* are equal to their own complex conjugates,
it is easy to see that ðw��UuþÞ ¼ ðwþ�Uu�Þ. This means that correc-
tions (23) and (24) can be written as i�z and iz, where z is a complex
number, i.e. if, after a small perturbation is imposed, one of eigen-
values ±ki becomes damping, another, inversely, becomes growing.
In addition, as is seen (Fig. 4a), for this system, the effect of Re on
stability is not quadratic in Re, as in the case of Rayleigh–Benard
convection, but is linear in Re.

An inflection in stability (Fig. 4a, I) is caused by the fact that two
lower levels, which initially came apart due to the linear correc-
tion, intersect again, i.e. previously second level exchanges places
with the first level; therefore, the critical wave number also
changes jumpwise (Fig. 4b I). The intersection of levels is illus-
trated on Fig. 5a. Fig. 5a gives the evolution of first five levels of real
part of spectrum k under the action of flow and, in addition, Fig. 5b
shows the initial divergence of the lower level at a larger scale.

As well as in all of cases under consideration, for oscillatory
instability, a further increase in the Reynolds number has a stabi-
lizing effect.

4. Conclusions

The effect of Poiseuille flow on the convective stability of model
electrochemical system is considered. It is found that the effect is
destabilizing in the case of oscillatory instability in the system.
This is a new result, which is not available from the literature. It
is shown that this effect is caused by the fact that the problem is
not self-conjugate, because the system is multicomponent. In addi-
tion, it is found that the effect of Re on the stability of these sys-
tems is linear in Re at small Re, in contrast to the self-conjugate
Rayleigh–Benard problem, where the effect is quadratic in Re. A de-
crease in the stability of oscillatory systems, which is found here, is
of practical importance, because it can be observed immediately in
the experiments, in contrast to the classical Rayleigh–Benard–
Poiseuille problem, where it cannot be observed without crating
nonuniform geometrical conditions for rolls of various types. A de-
crease in stability can have a pronounced effect on the generation
of convective noises in the electrochemical devices and should be
taken into account, when they are developed.

It should be noted that a possibility of decreasing stability of
multicomponent Rayleigh–Benard systems by imposing external
hydrodynamic flow is typical of not only electrochemical systems.
For instance, in geophysics, a similar effect of a decrease in stability
is observed in the binary convection under the conditions of non-
uniform temperature and salinity in sea water. In addition, as fol-
lows from the analysis of the reasons for a decrease in stability, it
will take place in the case of hydrodynamic flow of another nature
(the Couette flow, for example).
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Appendix. Mathematical model

Within the Boussinesq approximation, the theory of dilute elec-
trolytes and taking into account the assumption of electroneutral-
ity, the equations of incompressible viscous liquid flow and ion
transfer in the electrolyte layer between two horizontal electrodes
can be written as follows [12]:

ov
ot
þ ðv � OÞv ¼ � 1

qb
Opþ vMv� ezg

qb
ðq� qbÞ

divðvÞ ¼ 0
oc1

ot
¼ D1Mc1 þ

Fz1D1

RT
ðOc1Ouþ c1MuÞ � vOc1

oc2

ot
¼ D2Mc2 þ

Fz2D2

RT
ðOc2Ouþ c2MuÞ � vOc2

oc3

ot
¼ D3Mc3 þ

Fz3D3

RT
ðOc3Ouþ c3MuÞ � vOc3

z1c1 þ z2c2 þ z3c3 ¼ 0

ðA:1Þ

For three-component electrolyte, which is produced of two
source substances, the electrolyte density can be always expressed
in terms of concentrations of two types of ions, because the con-
centration of ions of the third type is uniquely determined by the
electroneutrality condition. For the sake of definiteness, we assume
that the electrolyte density is expressed as follows:

q� qb ¼ b1ðc1 � c1b
Þ þ b2ðc2 � c2b

Þ ðA:2Þ

Assume that the following reaction proceeds on the electrodes:

n1Mz1
1 þ ne$ n2Mz2

2 ðA:3Þ

Eq. (A.3) describes both redox reactions (n2 6¼ 0) and the reac-
tions of cathodic deposition (anodic dissolution) (n2 = 0).

The boundary conditions for set of equation (A.1) for the limit-
ing-current mode, i.e. at zero concentration of electroactive ion on
the cathode surface, can be written as follows:
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vjz¼�h=2;z¼h=2 ¼ 0 ðA:4Þ
oc3

oz
þ Fz3c3

RT
ou
oz

� �����
z¼�h=2;z¼h=2

¼ 0 ðA:5Þ

n2D1
oc1

oz
þ Fz1c1

RT
ou
oz

� �
¼ �n1D2

oc2

oz
þ Fz2c2

RT
ou
oz

� �� �����
z¼�h=2;z¼h=2

ðA:6Þ

c1jz¼�h=2 ¼ 0; c1jz¼h=2 ¼ 2c1b
ðA:7Þ

We assume that the concentration of supporting electrolyte is
significantly higher than the concentration of electroactive
electrolyte

e ¼ c1b

c3b

� 1 ðA:8Þ

Let us estimate the relative diffusion and migration terms in
the equations of ion transfer and the corresponding boundary
conditions at e� 1. The difference between the concentrations
of the first electrolyte component at the anode and at the cath-
ode is denoted as dc1ðdc1 � ec3b

Þ. From the electroneutrality con-
dition, for the second and the third electrolyte components, we
obtain:

dc2 � dc1 � ec3b

dc3 � dc1 � ec3b

ðA:9Þ

Thus, the diffusion terms for all electrolyte components have
identical relative values proportional to e. To estimate the deriva-
tives of electric potential, the condition of charge conservation is
used

X3

m¼1

zmDmDcm þru
X3

m¼1

Fz2
mDm

RT
rcm þru

X3

m¼1

Fz2
mDmcm

RT
¼ 0;

ðA:10Þ

which follows from the equations of ion transfer (1) and the electro-
neutrality condition.

Taking into account that
P3

m¼1zmDmDcm �

ec3b

P3
m¼1

Fz2
mDm
RT rcm

��� ��� � ec3b

P3
m¼1

Fz2
mDmcm

RT � c3b
and Du � jruj, we

obtain: Du � e, jruj � e.
In the approximation linear in parameter e, set of equation (A.1)

will take the following form:

ov
ot
þ ðv � rÞv ¼ � 1

qb
rpþ mDv� ezg

qb
½b1ðc1 � c1b

Þ þ b2ðc2 � c2b
Þ�

divðvÞ ¼ 0

oc1

ot
¼ D1Dc1 � vrc1

oc2

ot
¼ D2Dc2 þ

Fz2D2c2b

RT
Du� vrc2

oc3

ot
¼ D3Dc3 þ

Fz3D3c3b

RT
Du� vrc3

z1c1 þ z2c2 þ z3c3 ¼ 0

ðA:11Þ

From boundary conditions (A.6) and (A.7) and the electroneu-
trality condition, taking into account that e� 1, we obtain:

o

oz
n2D1

n1D2
c1 þ c2 þ c3

� �����
z¼�h=2;z¼h=2

¼ 0 ðA:12Þ

Introducing new variable (concentration of fictitious ion)
c4 ¼
n2D1

n1D2
ðc1 � c1b

Þ þ c2 � c2b
þ c3 � c3b

ðA:13Þ

and expressing concentrations c2 and c3 in terms of c1 and c4

c2 ¼ c2b
þ z3

z3 � z2
c4 þ

z1 � z3n2D1=n1D2

z3 � z2
ðc1 � c1b

Þ

c3 ¼ c3b
þ z2

z3 � z2
c4 þ

z1 � z2n2D1=n1D2

z3 � z2
ðc1 � c1b

Þ
ðA:14Þ

set of equation (A.11) can be presented as follows:

ov
ot
þ ðv � rÞv ¼ � 1

qb
rpþ mDv� ezg

qb
aðc1 � c1b

Þ þ z3

z3 � z2
b2c4

� �
divðvÞ ¼ 0
oc1

ot
¼ D1Dc1 � vrc1

oc4

ot
¼ D4Dc4 þ D�Dc1 � vrc4

ðA:15Þ

with the boundary conditions:

vjz¼�h=2;z¼h=2 ¼ 0 ðA:16Þ
c1jz¼�h=2 ¼ 0; c1jz¼h=2 ¼ 2c1b

ðA:17Þ
oc4

oz

����
z¼�h=2;z¼h=2

¼ 0 ðA:18Þ

In the dimensionless form, set of equation (A.15) will take the
following form:

oV
os
þ 1

Sc
ðV � rÞV ¼ �rP þ DV � ezRaðC1 � 0:5þ C4Þ

divðVÞ ¼ 0

Sc
oC1

os
¼ DC1 � VrC1

Sc
oC4

os
¼ D4DC4 � VrC4 þ D�DC1

ðA:19Þ

with the boundary conditions:

VjZ¼�1
2;Z¼

1
2
¼ 0

C1jZ¼�1
2
¼ 0; C1jZ¼�1

2
¼ 1

oC4

oZ

����
Z¼1

2;Z¼
1
2

¼ 0

ðA:20Þ
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